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The relation between a recently introduced dynamical real-space renormaliza- 
tion group and the fluctuation-dissipation theorem is discussed. An apparent 
incompatibility is pointed out and resolved. 
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1. I N T R O D U C T I O N  

Over  the years, Langevin dynamics  has been proven to be a successful 
theoret ical  app roach  to nonequi l ibr ium problems such as critical 
dynamics,(t~ growth processes/2~ and interface dynamics.  ~3~ In a previous 
paper  (41 an exact dynamical  real-space renormal iza t ion group analysis of  
Langevin dynamics  derivable from a Gauss ian  field theory was presented. 
The method has the same range of  appl icabi l i ty  as the static counterpar t ,  
namely, one-dimensional  lattices and a whole set of hierarchical  or  self- 
similar structures. Apar t  from the methodologica l  interest of  the scheme 
per se, the results of  the method are expected to be of  pract ical  interest as 
well, in view of  the real izat ion of  growth processes on electrochemical elec- 
t rodes /  51 Unlike other  real-space approx imate  schemes, 161 one impor tan t  
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feature of this approach is that it contains the static analog as a particular 
case. This naturally raises the question of the compatibility of the scheme 
with the standard fluctuation-dissipation theorem tTI which relates the 
mobility (assumed unity in the rest of the paper) to variance of the noise 
which drives the system. In this paper, we will address this issue within the 
framework of an exactly solvable model. This model, although simple, is 
important since it is the zeroth-order one in any perturbative expansion. 

Consider a system described by a Gaussian field theory in one dimen- 
sion with Hamiltonian (or action) H({q~} ) given by 

n({~o})=�89 Z qoxAx, yq~y (1) 
X , y  

with the field variables q~x defined on the sites x of a lattice. As it is well 
known, 5 the implementation of an exac t  static real-space renormalization 
group analysis is possible only in the case when the matrix Ax, y has a 
nearest neigbor restriction: 

A,.  y = a.,.Ox, y - Olx-yl.  1 (2) 

The renormalization procedure has three basic steps: 

1. The set E of lattice points is divided into E~. (sites which survive 
the decimation) and Ed (sites which are decimated), so that their 
union is E and their intersection is null. The degrees of freedom 
corresponding to Ea are then eliminated either by integration over 
the corresponding field variables or by elimination of the corre- 
sponding equations of motion (in the dynamical case). 

2. The surviving fields are rescaled so that the new Hamiltonian has 
the form as the original one. 

3. Lengths are scaled in such a way that the original lattice constant 
is recovered. 

As result of this procedure, a mapping between the original and the 
new set of parameters is obtained. 

Let us now recall the results of the same procedure in dynamics, t4~ The 
simplest Langevin dynamics can be constructed as 

oq, x( t ) 
Ot 

~H({ r ) + rL,.(t) = _ ~  Ax,;,~oy(t ) + tL,.(t ) 
6cp.,. .,' 

s There is a huge literature on this topic; see, e.g., ref. 8. 

(3) 
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where the stochastic noise ~/x(t) is chosen from a Gaussian distribution 
which has a zero average and variance 

(~/x(t,) qy(t2)) = 2D.,. y 6(t 1 - t2) (4) 

The renormalization scheme works along the same lines as in the static 
case, but with the important difference that the renormalization of the 
noise also has to be taken into account. It was shown in ref. 4 that a 
necessary and sufficient condition for the implementation of the renor- 
malization procedure is that the matrix Dx.y has the form 

Do~,..:, + DIJi.,._yl. l (5) 

Since both Do and D l are different from zero under renormalization, the 
minimum parameter space for the fluctuation matrix D is given by 
{Do, Dl}, implying nearest neighbor correlation of the noise. We stress 
once again that both the static and the dynamic schemes we are dealing 
with are exact, i.e., closed in the parameter space. 

We now turn to the connection with the fluctuation-dissipation 
theorem. The Fokker-Planck equation associated with the Langevin 
dynamics (3) with a noise whose variance is (4) is (71 

0 p({(p}, t)=~. ~.~ [ P({cp} ), t) 6-~. ~ H({q~} )+ ~D~ v 6-~v P({~o}, t)] 
O t  . .  . y " 

(6) 

It is then easy to show from (6) that, if we denote by Peq({~0}) the equi- 
librium probability distribution obtained in the t--* oo limit, a necessary 
condition for (,4: -~ is a normalization factor) 

Peq({~o}) --  ..-4f - le -H({~}) (7)  

to be satisfied is that the matrix Dx, y has a diagonal form, so that in the 
case of Eq. (5) Dl =0 .  Indeed (3)-(5) with D I = 0  lead to the equilibrium 
distribution given by (7). However, the dynamical renormalization group 
violates, in general, the fluctuation-dissipation theorem, since one has to 
start with a matrix with a nondiagonal form and the equilibrium distribu- 
tion of (7) is not  obtained. 

We now argue that this inconsistency is only apparent. We will show 
that the D~ ~ 0 case will lead to an equilibrium distribution of a more 
general Gaussian Hamiltonian. However, we will explicitly demonstrate that 
equilibrium correlation functions corresponding to the two Hamiltonians 
are characterized by the same spatial decay. 
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Let us consider a more general Gaussian Hamiltonian: 

B({~o}) = �89 ~ ~o,..~,. ,,q,,, (8) 
x,y 

where the symmetrix matrix ,4.,.y is not necessarily restricted to nearest 
neighbors. On again using Eq. (6), it can be shown readily that a Langevin 
equation of the more general form 

0~0x(t) = - ~ ,  D.,., :, 6H({~p} )+  r/x.(t) (9) 
Ot y 6~O y " 

leads to the equilibrium distribution 

Peq({ f/O} )=u4/'-1 exp( -/-)({ q~})) (10) 

Thus if one starts with the model defined by Eqs. (1)-(4) with Do = 1 
and D~ =0, so that the equilibrium distribution is given by Eq. (7), then 
the dynamical renormalization group (DRG) leaves the Langevin equation 
of the form (3) with A and D given by Eqs. (2) and (4) respectively, with 
D n # 0 after one RG step. 

From Eqs. (8)-(I0), the equilibrium distribution is given by (10), with 
given by (8) and 

.7t = D - 1 A  (11) 

.4 is symmetric since both D and A depend only on the difference [ x - y [ .  
Thus initially .4 = A and then the DRG flow for / t  occurs in a wider 
parameter space than the original one given by Eq. (2) [i.e., .4 no longer 
has the form (2)]. On the contrary, a static RG would leave H of the form 
(1)-(2). However, as we show below, these two Hamiltonians are equiv- 
alent in the sense that the corresponding correlation functions have the 
same leading behavior. It is noteworthy that a stat ic  Gaussian model with 
interactions defined by A appearing in the Hamiltonian (8) not restricted 
to short range can be exactly renormalized through the dynamics, provided 
that the matrix D. .4 is restricted to nearest neighbor interactions! 

As an explicitly solvable example, let us consider the simplest case of 
a one-dimensional lattice with ax =a.  The static recursions are: 181 

a' =a2- -2  (12) 

The corresponding dynamics leads to the following recursions~4): 

~'(~o') = ~2(o9)- 2 (13a) 

O~ = ~D0 + Dl + o(co) (13b) 

D't = ~Do + �89 + o(co) (13c) 

where co(co) = a - ico and co is the Fourier variable conjugate to time. 
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From Eq. (13a) it is apparent  that the static case is recovered in the 
limit co---, 0 (i.e., t ~ oo), that is, the statics is included in the dynamics, as 
we mentioned already. 

Let us now discuss the two-point correlation function given by 

1 f -ul{~} G ...... = ( q ~ , . ~ o , ) = ~  ~ 0 e  )~o,.q),,=(A -~) ....... (14) 

where Z is the parti t ion function and N~o-  1--[ &0,.. A similar expression 
holds for (~,.y corresponding to the Hamiltonian H({~o} ). 

Due to the particular form of A and D and using Eq. (11), one can 
easily see that the G,..:, and G,..,, are given by (with the lattice constant set 
to unity) 

~+'~ e iq~x-'l (15) 
dq 1 

Gx, y =  - ~  a - 2 c o s q  

and 

Cr,. ,,= I+~-~n eiql"-Y) D~ + 2Dl c~ q (16) 
-'- - a - 2 cos q 

The integrals can be carried out exactly and in the a > 2 case, where the 
correlation functions are real, they yield the same coarse-grained behavior 
i.e., 

(when I x - y l  > 1) and 

1 
.,. - e -~ lx - ' l  (17) G~ ,, (a2_4)1/2 

Do + D~a e_,t lx_yl (18) 

where we have defined 

This shows that the two Hamiltonians H a n d / ~  are indeed equivalent, in 
the sense that the corresponding correlation functions decay similarly. 

Converse137, one can show that A may be written in the form (11) with 
A and D given by (2) and (5), respectively, provided that, at leading order, 
it is of the form 

-~,. y = a6~. y + be -~' t-,'-),l (20) 
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In summary,  we have discussed the issue of  the re la t ionship between 
the dynamical  renormal iza t ion group and the f luctuat ion-diss ipat ion 
theorem, which was p rompted  by our  previous analysis. We showed that  
a l though at first glance there is a violat ion of the f luctuat ion-diss ipat ion 
theorem, a more  careful analysis restores its validity. 
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